HPC With R: The Basics

Drew Schmidt

November 12, 2016

tHE [JNIVERSITYof
TENNESSEEUIr

KNOXVILLE

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Tutorial Goals

We hope to introduce you to:

Q Basic debugging.
@ Evaluating the performance of R code.
© Some R best practices to help with performance.

© Basics of parallelism in R.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Exercises

Each section has a complement of exercises to give hands-on reinforcement of ideas introduced
in the lecture.

@ Later exercises are more difficult than earlier ones.

Q Some exercises require use of things not explicitly shown in lecture; look through the
documentation mentioned in the slides to find the information you need.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Part |

Basics

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Introduction

@ Introduction
© Debugging
© Profiling

@ Benchmarking

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Introduction

Resources for Learning R

o The Art of R Programming by Norm Matloff: http://nostarch.com/artofr.htm

@ An Introduction to R by Venables, Smith, and the R Core Team:
http://cran.r-project.org/doc/manuals/R-intro.pdf

o The R Inferno by Patrick Burns:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

o Mathesaurus: http://mathesaurus.sourceforge.net/

@ R programming for those coming from other languages:
http://www.johndcook.com/R_language_for_programmers.html

o aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and Kevin Ushey:
http://tim-smith.us/arrgh/

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

http://nostarch.com/artofr.htm
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://mathesaurus.sourceforge.net/
http://www.johndcook.com/R_language_for_programmers.html
http://tim-smith.us/arrgh/

Introduction

Other Invaluable Resources

o R Installation and Administration:
http://cran.r-project.org/doc/manuals/R-admin.html

Task Views: http://cran.at.r-project.org/web/views

Writing R Extensions: http://cran.r-project.org/doc/manuals/R-exts.html
Mailing list archives: http://tolstoy.newcastle.edu.au/R/

The [R] stackoverflow tag.

The #rstats hastag on Twitter.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

http://cran.r-project.org/doc/manuals/R-admin.html
http://cran.at.r-project.org/web/views
http://cran.r-project.org/doc/manuals/R-exts.html
http://tolstoy.newcastle.edu.au/R/

Debugging

© Introduction

9 Debugging
o Debugging R Code
o The R Debugger
@ Debugging Compiled Code Called by R Code

© Profiling

@ Benchmarking

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging R Code

e Debugging
o Debugging R Code

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging R Code

Debugging R Code

o Very broad topic ...
o We'll hit the highlights.

@ For more examples, see:
cran.r-project.org/doc/manuals/R-exts.html#Debugging

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

cran.r-project.org/doc/manuals/R-exts.html#Debugging

Debugging Debugging R Code

Object Inspection Tools

@ print()
o str()

o unclass()

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging R Code

Object Inspection Tools: print ()

Basic printing:

1> x <- matrix(1:10, nrow=2)
2|> print (x)

3 [,11 [,2] [,3]1 [,4]1 [,s]
4| [1,] 1 3 5 7 9
5| [2,] 2 4 6 8 10
6> x

7 [,11 [,2] [,3] [,4] [,s]
8| [1,] 1 3 5 7 9
9| [2,] 2 4 6 8 10

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging R Code

Object Inspection Tools: str ()

Examining the structure of an R object:

1> x <- matrix(1:10, nrow=2)
> str(x)
int [1:2, 1:5] 1 2 3 4 5 6 7 8 9 10

w N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging R Code

Object Inspection Tools: unclass ()

Exposing all data with unclass():

df <- data.frame(x=rnorm(10), y=rnorm(10))
mdl <- Im(y~“x, data=df) ### That’s a "tilde" character

mdl
print (mdl)

str (mdl)

© 00 N O AW N

unclass (mdl)

Try it!

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging The R Debugger

e Debugging

o The R Debugger

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging The R Debugger

The R Debugger

o debug()

@ debugonce()

o undebug()

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging The R Debugger

Using The R Debugger
@ Declare function to be debugged: debug(foo)
Q Call function: foo(argl, arg2, ...)

next: Enter or n followed by Enter.
break: Halt execution and exit debugging: Q.
exit: Continue execution and exit debugging: c.

O Call undebug() to stop debugging

Slides: wrathematics.github.io/hpcdevcon2016/

Drew Schmidt | HPC With R: The Basics

Using the Debugger

Example Debugger Interaction

> f <- function(x){y <- z+1;z <- y*2;z}
> £(1)
Error in f£(1) : object ’z’ not found
> debug (f)
> £(1)
debugging in: £ (1)
debug at #1: {
y <-z + 1
z <-y * 2
10 z
1|}
12| Browse [2] >
13| debug at #1: y <- z + 1
14| Browse [2] >
15| Error in f£(1) : object ’z’ not found
16| >

© 00 N O O AW N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging Compiled Code Called by R Code

e Debugging

o Debugging Compiled Code Called by R Code

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Debugging Debugging Compiled Code Called by R Code

Debugging Compiled Code

o Reasonably easy to use gdb and Valgrind.

@ See "Writing R Extensions” manual.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling

© Introduction
9 Debugging

© Profiling
o Why Profile?
o Profiling R Code
o Advanced R Profiling

@ Benchmarking

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profil

© Profiling
o Why Profile?

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profile?

Performance and Accuracy

Sometimes ™ = 3.14 is (a) infinitely faster than the “correct”
answer and (b) the difference between the “correct” and
the “wrong” answer is meaningless. ... The thing is, some
specious value of “correctness” is often irrelevant because it
doesn’t matter. While performance almost always matters.
And | absolutely detest the fact that people so often dismiss
performance concerns so readily.

— Linus Torvalds, August 8, 2008

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profile?

Compilers often correct bad behavior. . .

A Really Dumb Loop clang -S example.c
1| int main(){ main:
2 int x, i; .cfi_startproc
3 for (i=0; i<10; i++) # BB#0:
4 x = 1; movl $0, -4(%rsp)
5 return O; movl $0, -12(%rsp)
6| .LBBO_1:
cmpl $10, -12(%rsp)
jge .LBBO_4
clang -03 -S example.c 4 BR#2:
main: movl $1, -8(%rsp)
.cfi_startproc # BB#3:
BB#0: movl -12(%rsp), %eax
xorl Y%eax, %eax addl $1, %eax
ret movl %eax, -12(%rsp)
jmp .LBBO_1
.LBBO_4:
movl $0, Jeax
ret t’r'

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profile?

R will not!

Dumb Loop Better Loop

1| for (i in 1:n){ 1| tA <- t(A)
2 tA <- t(A) 2
3 Y <- tA %*% Q 3| for (i in 1:n){
4 Q <- qr.Q(qr(Y)) 4 Y <- tA %*% Q
5 Y <- A %*x% Q 5 Q <- qr.Q(qr(Y))
6 Q <- qr.Q(qr(Y)) 6 Y <- A %*% Q
71} 7 Q <- qr.Q(qr(Y))
8 8|}
9|Q 9

10(Q

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profile?

Example from a Real R Package

Exerpt from Original function

while (i<=N){
for(j in 1:i){
d.k <- as.matrix(x) [1==j,1==j]

N

By changing just 1 line of code,
performance of the main method
improved by over 350%!

Exerpt from Modified function

x.mat <- as.matrix(x)

while (i<=N){
for(j in 1:i){
d.k <- x.mat[l==j,1==j]

o GO A W N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Why Profile?

Some Thoughts

o R is slow.

o Bad programmers are slower.

o R can't fix bad programming.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

© Profiling

o Profiling R Code

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

Getting simple timings as a basic measure of performance is easy, and valuable.
o system.time() — timing blocks of code.
@ Rprof () — timing execution of R functions.
o Rprofmem() — reporting memory allocation in R .

o tracemem() — detect when a copy of an R object is created.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

Performance Profiling Tools: system.time ()

system.time() is a basic R utility for timing expressions

1|x <- matrix(rnorm (20000%750), nrow=20000, ncol=750)
2

3| system.time (t(x) %*% x)

4 # user system elapsed
5| # 2.187 0.032 2.324
6

7| system.time (crossprod(x))
8| # user system elapsed
9| # 1.009 0.003 1.019
10

11| system.time (cov(x))

12| # user system elapsed

13 | # 6.264 0.026 6.338

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

Performance Profiling Tools: system.time ()

Put more complicated expressions inside of brackets:

x <- matrix(rnorm (20000%750), nrow=20000, ncol=750)

system.time ({
y <- x+1
z <- y*x2
b
user system elapsed
0.057 0.032 0.089

0 N O O W N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

Rprof (filename="Rprof.out", append=FALSE, interval=0.02,
memory .profiling=FALSE, gc.profiling=FALSE,
line.profiling=FALSE, numfiles=100L, bufsize=10000L)

w N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling | Profiling R Code

= =

YOU I}HANGEMHE OUTCOME BY
BMEASURING IT

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmldt HPC With R: The Basics

Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

x <- matrix (rnorm(10000%*250), nrow=10000, ncol=250)

Rprof ()
invisible (prcomp (x))
Rprof (NULL)

summaryRprof ()

© 00 N OO W N

Rprof (interval=.99)
10| invisible (prcomp (x))
11 | Rprof (NULL)

13 | summaryRprof ()

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Performance Profiling Tools: Rprof ()

1| $by.self

2 self.time self.pct total.time total.pct

3| "La.svd" 0.68 69.39 0.72 73.47

4| "hxh" 0.12 12.24 0.12 12.24

5| "aperm.default" 0.04 4.08 0.04 4.08

6| "array" 0.04 4.08 0.04 4.08

7| "matrix" 0.04 4.08 0.04 4.08

8| "sweep" 0.02 2.04 0.10 10.20

9| ### output truncated by presenter

10

11| $by.total

12 total.time total.pct self.time self.pct
13| "prcomp" 0.98 100.00 0.00 0.00
14| "prcomp.default" 0.98 100.00 0.00 0.00
15| "svd" 0.76 77.55 0.00 0.00
16| "La.svd" 0.72 73.47 0.68 69.39
17 | ### output truncated by presenter

18

19| $sample.interval

20| [1] 0.02

21

22| $sampling.time

23| [1] 0.98

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

1| $by.self

2| [1] self.time self.pct total.time total.pct
3/ <0 rows> (or O-length row.names)

4

5/$by.total

6| [1] total.time total.pct self.time self.pct
7/ <0 rows> (or O-length row.names)

8

9| $sample.interval

10 [1] 0.99

11

12| $sampling . time

13| [1]1 0

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Advanced R Profiling

© Profiling

o Advanced R Profiling

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Profiling Advanced R Profiling

Other Profiling Tools

o perf, PAPI

o fpmpi, mpiP, TAU
o pbdPROF

o pbdPAPI

See forthcoming paper Analyzing Analytics: Advanced Performance Analysis Tools for R for
more details.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Benchmarking

@ Introduction
© Debugging
© Profiling

@ Benchmarking

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Benchmarking

Benchmarking

o There's a lot that goes on when executing an R funciton.

@ Symbol lookup, creating the abstract syntax tree, creating promises for arguments,
argument checking, creating environments, ...

o Executing a second time can have dramatically different performance over the first
execution.

o Benchmarking several methods fairly requires some care.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Benchmarking

Benchmarking tools: rbenchmark

rbenchmark is a simple package that easily benchmarks different functions:

1|x <- matrix(rnorm(10000%500), nrow=10000, ncol=500)
2

3| f <- function(x) t(x) %*% x

4|g <- function(x) crossprod(x)

5

6| library (rbenchmark)

7| benchmark (£f(x), g(x), columns=c("test", "replications", "elapsed", "relative"))
8

9| # test replications elapsed relative

10# 1 f£(x) 100 13.679 3.588

1n(# 2 g(x) 100 3.812 1.000

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Benchmarking

Benchmarking tools: microbenchmark

microbenchmark is a separate package with a slightly different philosophy:

x <- matrix(rnorm (10000%500), nrow=10000, ncol=500)

f <- function(x) t(x) %*% x
g <- function(x) crossprod(x)

library(microbenchmark)
microbenchmark (f(x), g(x), unit="s")

© 0 N O O AE W N

Unit: seconds

expr min 1q mean median uq max neval
f(x) 0.11418617 0.11647517 0.12258556 0.11754302 0.12058145 0.17292507 100
g(x) 0.03542552 0.03613772 0.03884497 0.03668231 0.03740173 0.07478309 100

H oH H H

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Benchmarking

Benchmarking tools: microbenchmark

bench <- microbenchmark (f(x), g(x), unit="s")
boxplot (bench)

N o=

o
S]
o
3 .
o S
S =
bl —
=
8
e
§ o |
O @ °
E 8
=3
o
s |
©
8
o
<
8
]
T T
f(x) 9(x) 4
Expression

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Part |l

Improving R Performance

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements

e Free Improvements
o Packages
o The Bytecode Compiler
@ Choice of BLAS Library

@ Writing Better R Code

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements Packages

© Free Improvements
o Packages

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements Packages

o Many high-quality “application” packages exist.
Data manipulation: dplyr, data.table
Modeling/math: Many! Try the CRAN taskviews.

Parallelism: Discussed separately.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements The Bytecode Compiler

© Free Improvements

o The Bytecode Compiler

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements The Bytecode Compiler

The Compiler Package

Released in 2011 (Tierney)

o Bytecode: sort of like machine code for interpreters. ..
@ Improves R code speed by 2-5% generally.
°

Does best on loops.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements | The Bytecode Compiler

Bytecode Compilation

o Non-core packages not (bytecode) compiled by default.

o "“Base” and “recommended” (core) packages are.
o Downsides:

o (slightly) larger install size
o (much!) longer install process
o doesn’t fix bad code

Upsides: slightly faster.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements | The Bytecode Compiler

Compiling a Function

test <- function(x) x+1
test
function(x) x+1

library (compiler)

test <- cmpfun(test)
test

function(x) x+1

10| # <bytecode: 0x38c86c8>

© 0 N O A W N

12| disassemble (test)

13| # list(.Code, 1list (7L, GETFUN.OP, 1L, MAKEPROM.OP, 2L, PUSHCONSTARG.OP,
14| # 3L, CALL.OP, OL, RETURN.OP), list(x + 1, ‘+¢, 1list(.Code,

15 | # list (7L, GETVAR.OP, OL, RETURN.OP), list(x)), 1))

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements | The Bytecode Compiler

Compiling Packages
From R
1|install.packages("my_package", type="source", INSTALL_ opts="--byte-compile") |

From The Shell

-

export R_COMPILE_PKGS=1
R CMD INSTALL my_package.tar.gz

N

Or add the line: ByteCompile: yes to the package's DESCRIPTION file.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

The Compiler: How much does it help really?

f <- function(n) for (i in 1:n) 2*(3+4)

library (compiler)
f_comp <- cmpfun(f)

library (rbenchmark)

© 00 N O O AW N

10(n <- 100000

11 | benchmark (£ (n), f_comp(n), columns=c("test", "replications", "elapsed",
"relative"),

12| order="relative")

13| # test replications elapsed relative
14|(# 2 f_comp(n) 100 2.604 1.000
15| # 1 f(n) 100 2.845 1.093

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

The Compiler: How much does it help really?

g <- function(n){
x <- matrix(runif(n*n), nrow=n, ncol=n)
min(colSums (x))

3

library (compiler)
g_comp <- cmpfun(g)

© 0 N O O W N

10| library (rbenchmark)

12|n <- 1000

13| benchmark (g(n), g_comp(n), columns=c("test", "replications", "elapsed",
"relative"),

14| order="relative")

15 | # test replications elapsed relative
16|# 2 g_comp(n) 100 6.854 1.000
17| # 1 g(n) 100 6.860 1.001

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements Choice of BLAS Library

© Free Improvements

@ Choice of BLAS Library

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements Choice of BLAS Library

The BLAS

Basic Linear Algebra Subprograms.

o Basic numeric matrix operations.

@ Used in linear algebra and many statistical operations.
o Different implementations available.

o Several multithreaded BLAS libraries exist.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Free Improvements Choice of BLAS Library

Reference Atlas OpenBLAS MKL

v v v v
RFI{R DéC RRR D&cC RRR D&C

Comparing Symmetric Eigenvalue Performance http://bit.1ly/2£49Sop

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

1000
500~

100-
50-

000%

10004
500~

H
1)
S

Log10 Average Wall Clock Time (5 Runs)
g

0008

v v
RRR D&C

or

http://bit.ly/2f49Sop

Writing Better R Code

e Free Improvements

@ Writing Better R Code
@ Loops
o Ply Functions
@ Vectorization
o Loops, Plys, and Vectorization

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops

@ Writing Better R Code
o Loops

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops

o for

@ while
o No goto's or do while's.

o They're really slow.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops

Loops: Best Practices

Profile, profile, profile.

Mostly try to avoid.
Evaluate practicality of rewrite (plys, vectorization, compiled code)

Always preallocate storage; don't grow it dynamically.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Ply Functions

@ Writing Better R Code

o Ply Functions

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Ply Functions

“Ply” Functions

@ R has functions that apply other functions to data.

@ In a nutshell: loop sugar.
o Typical *ply’s:

apply (): apply function over matrix “margin(s)”.
lapply O): apply function over list/vector.

mapply (): apply function over multiple lists/vectors.
sapply (): same as lapply (), but (possibly) nicer output.
Plus some other mostly irrelevant ones.

@ Also Map() and Reduce().

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Ply Examples: apply ()

1|x <- matrix(1:10, 2)
2
3| x
4| # [,11 [,21 [,3]1 [,4]1 [,s5]
s|# [1, 1 3 5 7 9
6|# [2,] 2 4 6 8 10
7
8| apply (X=x, MARGIN=1, FUN=sum)
ol# [1]1 25 30
10
11| apply (X=x, MARGIN=2, FUN=sum)
12 # [1] 3 7 11 15 19
13
14 | apply (X=x, MARGIN=1:2, FUN=sum)
15| # [,11 [,2] [,3] [,4] [,s]
16|# [1,] 1 3 5 7 9
7| # [2,] 2 4 6 8 10
| 4
-

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Ply Examples: lapply() and sapply()

1|lapply(1:4, sqrt)
2(# [[1]]

3(# [1]1 1

4| #

s(# [[2]]

6|# [1] 1.414214

7| #

s|# [[3]]

o|# [1] 1.732051

10| #

u|# [[4]]

12# [1] 2

13

14 | sapply (1:4, sqrt)
15(# [1] 1.000000 1.414214 1.732051 2.000000

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Ply Functions

Transforming Loops Into Ply's

vec <- numeric(n)
for (i in 1:mn){
vec[i]l <- my_function (i)

AW N =

3

Becomes:

1| sapply(1:n, my_function)

Slides: wrathematics.github.io/hpcdevcon2016/

Drew Schmidt | HPC With R: The Basics

Writing Better R Code Ply Functions

Ply's: Best Practices

@ Most ply's are just shorthand/higher expressions of loops.

o Generally not much faster (if at all), especially with the compiler.

o Thinking in terms of lapply () can be useful however. ..

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Ply Functions

Ply's: Best Practices

o With ply’s and lambdas, can do some fiendishly crafty things.

o But don't go crazy. ..

fun

cat (sapply(letters, function(a) sapply(letters, function(b) sapply(letters,
function(c) sapply(letters, function(d) paste(a, b, c, d, letters, "\n",
sep=""))))))

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Vectorization

@ Writing Better R Code

@ Vectorization

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Vectorization

0 x+y
o x[, 1] <- 0
@ rnorm(1000)

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Vectorization

@ Same in R as in other high-level languages (Matlab, Python, ...).

o ldea: use pre-existing compiled kernels to avoid interpreter overhead.
@ Much faster than loops and plys.

1| ply <- function(x) lapply(rep(1, 1000), rnorm)
2| vec <- function(x) rnorm(1000)

3

4| library (rbenchmark)

5| benchmark (ply (x), vec(x))

6| # test replications elapsed relative

7[# 1 ply(x) 100 0.348 38.667

8|# 2 vec(x) 100 0.009 1.000

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops, Plys, and Vectorization

@ Writing Better R Code

o Loops, Plys, and Vectorization

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops, Plys, and Vectorization

Putting It All Together

o Loops are slow.

o apply (), Reduce() are just for loops.

@ Map(), lapply (), sapply (), mapply () (and most other core ones) are not for loops.
o Ply functions are not vectorized.

°

Vectorization is fastest, but often needs lots of memory.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops, Plys, and Vectorization

Squares
Let's compute the square of the numbers 1-100000, using
@ for loop without preallocation
@ for loop with preallocation
@ sapply(O)
@ vectorization

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Writing Better R Code Loops, Plys, and Vectorization

Squares

square_sapply <- function(n) sapply(l:n, function(i) i~2)

3| square_vec <- function(n) (1:n)*(1:n)

library (rbenchmark)
n <- 100000

B W N =

benchmark (square_loop_noinit(n), square_loop_withinit(n), square_sapply(n),
square_vec(n))

5| # test replications elapsed relative
6|# 1 square_loop_noinit (n) 100 17.296 2470.857
7|# 2 square_loop_withinit (n) 100 0.933 133.286
8|# 3 square_sapply (n) 100 1.218 174.000
9| # 4 square_vec (n) 100 0.007 1.000

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Part IlI

Parallelism

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

An Overview of Parallelism

@ An Overview of Parallelism
© Shared Memory Parallelism in R
© Distributed Memory Parallelism with R

@ Distributed Matrices

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

An Overview of Parallelism

Parallel Programming Packages for R

Shared Memory

Examples: parallel, snow, foreach, Examples: pbdR, Rmpi, RHadoop, RHIPE
gputools, HIPLARM

CRAN HPC Task View

For more examples, see:
http://cran.r-project.org/web/views/HighPerformanceComputing.html

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

http://cran.r-project.org/web/views/HighPerformanceComputing.html

An Overview of Parallelism

LAPACK
Focus on who owns V d BLAS

what communication is need e

Distributed Memory

Interconnection Network
ScaLAPACK

PBLAS
BLACS

Same Task on -
Blocks of data T""" .uomw

Co-Processor

TITT
innn> gy

CUBLAS

Shared Memory

.c
.Call
| X GPU: Graphical Proceséin{ REPP. MAGMA
MIG*Many Integratéd cord OpenCL RIiSiilg
inline [EELLUE MKL

Network @ ACML
MP LibSci
Memory ‘_';_f‘e" 5
o] DPLASMA
‘ @ snow + multicore = parallel] PLASMA

thematics.github.io/hpcdevcon2016/ ew Schmidt | HPC With R: The Basics

An Overview of Parallelism

Many parallel R packages break on Windows

A fatal exception BE has o irred at BB K n UXD UMHIB1) +
B current app ation will

: any key to t e nt application.
CTRL+ALT+DEL aga t B You will

lose any unsaved informa

ithub.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

An Overview of Parallelism

RNG's in Parallel

o Be careful!

o Aided by rlecuyer, rsprng, and doRNG packages.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

An Overview of Parallelism

Parallel Programming: In Theory

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

An Overview of Parallelism

Parallel Programming: In Practice

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics 57/86

Shared Memory Parallelism in R

@ An Overview of Parallelism

© Shared Memory Parallelism in R
@ The parallel Package
o The foreach Package
© Distributed Memory Parallelism with R

@ Distributed Matrices

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

© Shared Memory Parallelism in R
o The parallel Package

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package

o Comes with R > 2.14.0

o Has 2 disjoint interfaces.

parallel =snow + multicore

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

Operates on fork/join paradigm.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

+ Data copied to child on write (handled by OS)
+ Very efficient.
- No Windows support.

- Not as efficient as threads.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

mclapply (X, FUN,
mc.preschedule= TRUE mc.set.seed=TRUE,
mc.silent=FALSE, mc.cores=getOption("mc.cores", 2L),
mc.cleanup=TRUE, mc.allow.recursive=TRUE)

A w N R

x <- lapply(1:10, sqrt)

library(parallel)
x.mc <- mclapply(1:10, sqrt)

all.equal(x.mc, x)
[1] TRUE

N o R W N =

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

simplify2array(mclapply(1:10, function(i) Sys.getpid(), mc.cores=4))
[1] 27452 27453 27454 27455 27452 27453 27454 27455 27452 27453

simplify2array(mclapply(1:2, function(i) Sys.getpid(), mc.cores=4))
[1] 27457 2745

g R W N R

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

? Uses sockets.

+ Works on all platforms.
- More fiddley than mclapply ().

- Not as efficient as forks.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

Set up the worker processes

cl <- makeCluster (detectCores ())

cl

socket cluster with 4 nodes on host localhost

parSapply(cl, 1:5, sqrt)

0 N OO W N

stopCluster (cl)

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The parallel Package

The parallel Package: Summary

All
o detectCores()

o splitIndices()

multicore

@ mclapply() o makeCluster()
o mcmapply () o stopCluster()
o mcparallel() o parLapply()

@ mccollect() o parSapply()

@ and others. .. @ and others. .

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

© Shared Memory Parallelism in R

o The foreach Package

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

The foreach Package

@ On Cran (Revolution Analytics).

o Main package is foreach, which is a single interface for a number of “backend” packages.
o Backends: doMC, doMPI, doParallel, doRedis, doRNG, doSNOW.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R | The foreach Package

The foreach Package: The Idea

Unify the disparate interfaces.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics 67/86

Shared Memory Parallelism in R The foreach Package

The foreach Package
+ Works on all platforms (if backend does).

-+ Can even work serial with minor notational change.

+ Write the code once, use whichever backend you prefer.
- Really bizarre, non-R-ish synatx.

- Efficiency issues if you aren't careful!

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

Coin Flipping with 24 Cores

2- 1| ### Bad performance
foreach(i=1:1en) %dopar%
tinyfun (i)

N

Function
- lapply
= mclapply
- foreach

Expected performance
foreach(i=1:ncores) Y%dopar¥ {
out <- numeric(len/ncores)
for (j in 1:(len/ncores))
out[i] <- tinyfun(j)

out

Log Run Time in Seconds

© o N o bW

! | i i
10000 1e+05 1e+06

100 10
Length of Iterating Set

.
1S

wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

The foreach Package: General Procedure

o Load foreach and your backend package.

o Register your backend.

o Call foreach

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

Using foreach: serial

1| library (foreach)

2

3| ### Example 1

4| foreach(i=1:3) %do) sqrt (i)

5

6| ### Example 2

7|n <- 50

8| reps <- 100

9

10|x <- foreach(i=1:reps) %do% {
11 sum(rnorm(n, mean=i)) / (n*reps)
12|

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Using foreach: Parallel

library (foreach)
library (<mybackend>)

register <MyBackend > ()

Example 1
foreach(i=1:3) Jdopar) sqrt (i)

© 00 N OO E W N

Example 2
10/n <- 50
11| reps <- 100

12

13| x <- foreach(i=1:reps) Ydopar/ {

14 sum(rnorm(n, mean=i)) / (n*xreps)
15X

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Shared Memory Parallelism in R The foreach Package

foreach backends

multicore
library (doParallel)
2| registerDoParallel (cores=ncores)
3| foreach(i=1:2) Y%dopar’ Sys.getpid()
snow

library (doParallel)
cl <- makeCluster (ncores)
registerDoParallel (cl=cl)

foreach(i=1:2) Ydopary Sys.getpid()
stopCluster (cl)

S O A W N =

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R

@ An Overview of Parallelism
© Shared Memory Parallelism in R

© Distributed Memory Parallelism with R
o Distributed Memory Parallelism
o Rmpi
o pbdMPI vs Rmpi

@ Distributed Matrices

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R Distributed Memory Parallelism

© Distributed Memory Parallelism with R
@ Distributed Memory Parallelism

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R Distributed Memory Parallelism

Why Distribute?

@ Nodes only hold so much ram.

o Commodity hardware: = 32 — 64 gib.
o With a few exceptions (ff, bigmemory), R does computations in memory.

o If your problem doesn't fit in the memory of one node. ..

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R Distributed Memory Parallelism

Packages for Distributed Memory Parallelism in R

o Rmpi, and snow via Rmpi.
o RHIPE and RHadoop ecosystem.

o pbdR ecosystem.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R Rmpi

© Distributed Memory Parallelism with R

o Rmpi

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R Rmpi

Rmpi Hello World

1| mpi.spawn.Rslaves (nslaves=2)

2| # 2 slaves are spawned successfully. 0 failed.

3| # master (rank O, comm 1) of size 3 is running on: wootabega
4|# slavel (rank 1, comm 1) of size 3 is running on: wootabega
5|# slave2 (rank 2, comm 1) of size 3 is running on: wootabega
6

7| mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))
8| # $slavel

o|# [1] "I am 1 of 3"

10 | #

11| # $slave2

12(# [1] "I am 2 of 3"

13

14 | mpi.exit ()

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Using Rmpi from snow

Distributed Memory Parallelism with R

Rmpi

library (snow)
library (Rmpi)

clusterCall (cl,
clusterCall (cl,
stopCluster (cl)
mpi.quit ()

0 N OO W N

cl <- makeCluster (2,

type = "MPI")
function() Sys.getpid())
runif, 2)

Slides: wrathematics.github.io/hpcdevcon2016/

Drew Schmidt

HPC With R: The Basics

Distributed Memory Parallelism with R Rmpi

Rmpi Resources

o Rmpi tutorial: http://math.acadiau.ca/ACMMaC/Rmpi/

© Rmpi manual: http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

http://math.acadiau.ca/ACMMaC/Rmpi/
http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf

Distributed Memory Parallelism with R pbdMPI vs Rmpi

© Distributed Memory Parallelism with R

o pbdMPI vs Rmpi

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R pbdMPI vs Rmpi

pbdMPI vs Rmpi

o Rmpi is interactive; ppbdMPI is exclusively batch.
pbdMPI is easier to install.
pbdMPI has a simpler interface.

pbdMPI integrates with other pbdR packages.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Memory Parallelism with R pbdMPI vs Rmpi

Example Syntax

Rmpi pbdMPI

int 1|a11reduce(x)
mpi.allreduce(x, type=1)
double

mpi.allreduce(x, type=2)

A wN e

Types in R

> typeof (1)
[1] "double"
> typeof (2)
[1] "double"
> typeof (1:2)
[1] "integer"

S O A W N

Slides: wrathematics.github.io/hpcdevcon2016/

Drew Schmidt | HPC With R: The Basics

Distributed Matrices

@ An Overview of Parallelism
© Shared Memory Parallelism in R
© Distributed Memory Parallelism with R

@ Distributed Matrices

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Matrices and Statistics with ppdDMAT

Least Squares Benchmark

Fitting y~x With Fixed Local Size of ~43.4 MiB

e o
125 3

Predictors === 500 == 1000 == 2000

z
g
Y
g
E
o »
50 - o 5 =
DRL
Q\(’@
A »
7_,93&9?(’ 5 z
F® & K =
Cores
x <— ddmatrix(”rnorm” , nrow=m, ncol=n)
<— ddmatrix(”"rnorm” , nrow=m, ncol=1
| 4
mdl <— Im. fit (x=x, y=y)

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Matrices

pbdR Scripts

@ They're just R scripts.

o Can't run interactively (with more than 1 rank).

o We can use pbdinline to get “pretend interactivity"” .

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Matrices

ddmatrix: 2-dimensional Block-Cyclic with 6 Processors

X11 X12 | X13 X14 | X15 Xi6 | X17 X18 | X19
X21 X2 | X203 X4 | Xo5 Xop | X207 X28 | X29
X31 X32 | X33 X34 | X35 X36 | X37 X338 | X39
X41 Xa2 | Xa3 Xa4 | X45 X46 | X47 X48 | X49
X = X51 Xs52 | X53 X54 | X55 X56 | X57 X5g | X59
X6l X2 | X63 Xp4 | X65 X66 | X67 X68 | X69
X71 X72 | X73 X74 | X75 X76 | X77 X78 | X79
Xg1 Xg2 | X83 X84 | X85 X386 | X87 X88 | X89
| Xo1 X92 | X93 X94 | Xo5 Xo6 | Xg7 X98 | X99 | g ¢

O

Processor grid = ‘ g

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Matrices

Understanding ddmatrix: Local View

X11 X12 | X17 X18 X13 X14 | X19 X15 X16
X21 X22 | X271 X28 X23 X24 | X29 X25 X26
X51 X52 | X57 X58 X53 X54 | X59 X565 X56
X61 X62 | X67 X68 X63 X64 | X69 X65 X66

X91 X92 | Xg7 X98 |g. ., L X093 Xo4 | X990 | o L X05 X096 g,

X31 X32 | X37 X38 X33 X34 | X39 X35 X36
Xa1 X42 | X47 Xag X43 Xa4 | X49 X45 Xa6
X71 X72 | X77 X8 X73 X74 | X79 X75 X76

| X1 Xg2 | X7 X88 |44 L X683 Xsa | X80 [, 3 L X85 X86 1,0

Processor grid = ‘ g

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

Distributed Matrices

Methods for class ddmatrix
pbdDMAT has over 100 methods with identical syntax to R:
o [, rbind(), cbind(), ...
Im.fit (), prcomp(), cov(), ...

°
o “%x%>, solve(), svd(), norm(), ...
°

median(), mean(), rowSums(), ...

Serial Code

1|cov(x) |

Parallel Code

1|cov(x) |

HPC With R: The Basics

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt

Part IV

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

~Thanks!~

Questions?

NV
) wrathematics@gmail.com
OGitHub: https://github.com/wrathematics
A -

Web: http://wrathematics.info
’Twitter: O@wrathematics

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics

mailto:wrathematics@gmail.com
https://github.com/wrathematics
http://wrathematics.info
http://twitter.com/wrathematics

	Basics
	Introduction
	Debugging
	Debugging R Code
	The R Debugger
	Debugging Compiled Code Called by R Code

	Profiling
	Why Profile?
	Profiling R Code
	Advanced R Profiling

	Benchmarking

	Improving R Performance
	Free Improvements
	Packages
	The Bytecode Compiler
	Choice of BLAS Library

	Writing Better R Code
	Loops
	Ply Functions
	Vectorization
	Loops, Plys, and Vectorization

	Parallelism
	An Overview of Parallelism
	Shared Memory Parallelism in R
	The parallel Package
	The foreach Package

	Distributed Memory Parallelism with R
	Distributed Memory Parallelism
	Rmpi
	pbdMPI vs Rmpi

	Distributed Matrices

	Wrapup

