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Tutorial Goals

We hope to introduce you to:

Q Basic debugging.
@ Evaluating the performance of R code.
© Some R best practices to help with performance.

© Basics of parallelism in R.

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Exercises

Each section has a complement of exercises to give hands-on reinforcement of ideas introduced
in the lecture.

@ Later exercises are more difficult than earlier ones.

Q Some exercises require use of things not explicitly shown in lecture; look through the
documentation mentioned in the slides to find the information you need.
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Introduction

@ Introduction
© Debugging
© Profiling

@ Benchmarking
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Introduction

Resources for Learning R

o The Art of R Programming by Norm Matloff: http://nostarch.com/artofr.htm

@ An Introduction to R by Venables, Smith, and the R Core Team:
http://cran.r-project.org/doc/manuals/R-intro.pdf

o The R Inferno by Patrick Burns:
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

o Mathesaurus: http://mathesaurus.sourceforge.net/

@ R programming for those coming from other languages:
http://www.johndcook.com/R_language_for_programmers.html

o aRrgh: a newcomer’s (angry) guide to R, by Tim Smith and Kevin Ushey:
http://tim-smith.us/arrgh/
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Introduction

Other Invaluable Resources

o R Installation and Administration:
http://cran.r-project.org/doc/manuals/R-admin.html

Task Views: http://cran.at.r-project.org/web/views

Writing R Extensions: http://cran.r-project.org/doc/manuals/R-exts.html
Mailing list archives: http://tolstoy.newcastle.edu.au/R/

The [R] stackoverflow tag.

The #rstats hastag on Twitter.
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Debugging

© Introduction

9 Debugging
o Debugging R Code
o The R Debugger
@ Debugging Compiled Code Called by R Code

© Profiling

@ Benchmarking
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Debugging Debugging R Code

e Debugging
o Debugging R Code
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Debugging Debugging R Code

Debugging R Code

o Very broad topic ...
o We'll hit the highlights.

@ For more examples, see:
cran.r-project.org/doc/manuals/R-exts.html#Debugging
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Debugging Debugging R Code

Object Inspection Tools

@ print()
o str()

o unclass()
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Debugging Debugging R Code

Object Inspection Tools: print ()

Basic printing:

1> x <- matrix(1:10, nrow=2)
2|> print (x)

3 [,11 [,2] [,3]1 [,4]1 [,s]
4| [1,] 1 3 5 7 9
5| [2,] 2 4 6 8 10
6> x

7 [,11 [,2] [,3] [,4] [,s]
8| [1,] 1 3 5 7 9
9| [2,] 2 4 6 8 10
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Debugging Debugging R Code

Object Inspection Tools: str ()

Examining the structure of an R object:

1> x <- matrix(1:10, nrow=2)
> str(x)
int [1:2, 1:5] 1 2 3 4 5 6 7 8 9 10

w N
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Debugging Debugging R Code

Object Inspection Tools: unclass ()

Exposing all data with unclass():

df <- data.frame(x=rnorm(10), y=rnorm(10))
mdl <- Im(y~“x, data=df) ### That’s a "tilde" character

mdl
print (mdl)

str (mdl)

© 00 N O AW N

unclass (mdl)

Try it!
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Debugging The R Debugger

e Debugging

o The R Debugger
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Debugging The R Debugger

The R Debugger

o debug()

@ debugonce()

o undebug()
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Debugging The R Debugger

Using The R Debugger
@ Declare function to be debugged: debug(foo)
Q Call function: foo(argl, arg2, ...)

next: Enter or n followed by Enter.
break: Halt execution and exit debugging: Q.
exit: Continue execution and exit debugging: c.

O Call undebug() to stop debugging
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Using the Debugger

Example Debugger Interaction

> f <- function(x){y <- z+1;z <- y*2;z}
> £(1)
Error in f£(1) : object ’z’ not found
> debug (f)
> £(1)
debugging in: £ (1)
debug at #1: {
y <-z + 1
z <-y * 2
10 z
1|}
12| Browse [2] >
13| debug at #1: y <- z + 1
14| Browse [2] >
15| Error in f£(1) : object ’z’ not found
16| >

© 00 N O O AW N
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Debugging Debugging Compiled Code Called by R Code

e Debugging

o Debugging Compiled Code Called by R Code
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Debugging Debugging Compiled Code Called by R Code

Debugging Compiled Code

o Reasonably easy to use gdb and Valgrind.

@ See "Writing R Extensions” manual.
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Profiling

© Introduction
9 Debugging

© Profiling
o Why Profile?
o Profiling R Code
o Advanced R Profiling

@ Benchmarking
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Profiling Why Profil

© Profiling
o Why Profile?
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Profiling Why Profile?

Performance and Accuracy

Sometimes ™ = 3.14 is (a) infinitely faster than the “correct”
answer and (b) the difference between the “correct” and
the “wrong” answer is meaningless. ... The thing is, some
specious value of “correctness” is often irrelevant because it
doesn’t matter. While performance almost always matters.
And | absolutely detest the fact that people so often dismiss
performance concerns so readily.

— Linus Torvalds, August 8, 2008
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Profiling Why Profile?

Compilers often correct bad behavior. . .

A Really Dumb Loop clang -S example.c
1| int main(){ main:
2 int x, i; .cfi_startproc
3 for (i=0; i<10; i++) # BB#0:
4 x = 1; movl $0, -4(%rsp)
5 return O; movl $0, -12(%rsp)
6| .LBBO_1:
cmpl $10, -12(%rsp)
jge .LBBO_4
clang -03 -S example.c 4 BR#2:
main: movl $1, -8(%rsp)
.cfi_startproc # BB#3:
# BB#0: movl -12(%rsp), %eax
xorl Y%eax, %eax addl $1, %eax
ret movl %eax, -12(%rsp)
jmp .LBBO_1
.LBBO_4:
movl $0, Jeax
ret t’r'
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Profiling Why Profile?

R will not!

Dumb Loop Better Loop

1| for (i in 1:n){ 1| tA <- t(A)
2 tA <- t(A) 2
3 Y <- tA %*% Q 3| for (i in 1:n){
4 Q <- qr.Q(qr(Y)) 4 Y <- tA %*% Q
5 Y <- A %*x% Q 5 Q <- qr.Q(qr(Y))
6 Q <- qr.Q(qr(Y)) 6 Y <- A %*% Q
71} 7 Q <- qr.Q(qr(Y))
8 8|}
9|Q 9

10(Q

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Profiling Why Profile?

Example from a Real R Package

Exerpt from Original function

while (i<=N){
for(j in 1:i){
d.k <- as.matrix(x) [1==j,1==j]

N

By changing just 1 line of code,
performance of the main method
improved by over 350%!

Exerpt from Modified function

x.mat <- as.matrix(x)

while (i<=N){
for(j in 1:i){
d.k <- x.mat[l==j,1==j]

o GO A W N

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Profiling Why Profile?

Some Thoughts

o R is slow.

o Bad programmers are slower.

o R can't fix bad programming.
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Profiling Profiling R Code

© Profiling

o Profiling R Code
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Profiling Profiling R Code

Getting simple timings as a basic measure of performance is easy, and valuable.
o system.time() — timing blocks of code.
@ Rprof () — timing execution of R functions.
o Rprofmem() — reporting memory allocation in R .

o tracemem() — detect when a copy of an R object is created.
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Profiling Profiling R Code

Performance Profiling Tools: system.time ()

system.time() is a basic R utility for timing expressions

1|x <- matrix(rnorm (20000%750), nrow=20000, ncol=750)
2

3| system.time (t(x) %*% x)

4 # user system elapsed
5| # 2.187 0.032 2.324
6

7| system.time (crossprod(x))
8| # user system elapsed
9| # 1.009 0.003 1.019
10

11| system.time (cov(x))

12| # user system elapsed

13 | # 6.264 0.026 6.338
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Profiling Profiling R Code

Performance Profiling Tools: system.time ()

Put more complicated expressions inside of brackets:

x <- matrix(rnorm (20000%750), nrow=20000, ncol=750)

system.time ({
y <- x+1
z <- y*x2
b
# user system elapsed
# 0.057 0.032 0.089

0 N O O W N
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Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

Rprof (filename="Rprof.out", append=FALSE, interval=0.02,
memory .profiling=FALSE, gc.profiling=FALSE,
line.profiling=FALSE, numfiles=100L, bufsize=10000L)

w N
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Profiling | Profiling R Code

= =

YOU I}HANGEMHE OUTCOME BY
BMEASURING IT
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Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

x <- matrix (rnorm(10000%*250), nrow=10000, ncol=250)

Rprof ()
invisible (prcomp (x))
Rprof (NULL)

summaryRprof ()

© 00 N OO W N

Rprof (interval=.99)
10| invisible (prcomp (x))
11 | Rprof (NULL)

13 | summaryRprof ()
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Performance Profiling Tools: Rprof ()

1| $by.self

2 self.time self.pct total.time total.pct

3| "La.svd" 0.68 69.39 0.72 73.47

4| "hxh" 0.12 12.24 0.12 12.24

5| "aperm.default" 0.04 4.08 0.04 4.08

6| "array" 0.04 4.08 0.04 4.08

7| "matrix" 0.04 4.08 0.04 4.08

8| "sweep" 0.02 2.04 0.10 10.20

9| ### output truncated by presenter

10

11| $by.total

12 total.time total.pct self.time self.pct
13| "prcomp" 0.98 100.00 0.00 0.00
14| "prcomp.default" 0.98 100.00 0.00 0.00
15| "svd" 0.76 77.55 0.00 0.00
16| "La.svd" 0.72 73.47 0.68 69.39
17 | ### output truncated by presenter

18

19| $sample.interval

20| [1] 0.02

21

22| $sampling.time

23| [1] 0.98
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Profiling Profiling R Code

Performance Profiling Tools: Rprof ()

1| $by.self

2| [1] self.time self.pct total.time total.pct
3/ <0 rows> (or O-length row.names)

4

5/$by.total

6| [1] total.time total.pct self.time self.pct
7/ <0 rows> (or O-length row.names)

8

9| $sample.interval

10 [1] 0.99

11

12| $sampling . time

13| [1]1 0
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Profiling Advanced R Profiling

© Profiling

o Advanced R Profiling
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Profiling Advanced R Profiling

Other Profiling Tools

o perf, PAPI

o fpmpi, mpiP, TAU
o pbdPROF

o pbdPAPI

See forthcoming paper Analyzing Analytics: Advanced Performance Analysis Tools for R for
more details.
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Benchmarking

@ Introduction
© Debugging
© Profiling

@ Benchmarking

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Benchmarking

Benchmarking

o There's a lot that goes on when executing an R funciton.

@ Symbol lookup, creating the abstract syntax tree, creating promises for arguments,
argument checking, creating environments, ...

o Executing a second time can have dramatically different performance over the first
execution.

o Benchmarking several methods fairly requires some care.
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Benchmarking

Benchmarking tools: rbenchmark

rbenchmark is a simple package that easily benchmarks different functions:

1|x <- matrix(rnorm(10000%500), nrow=10000, ncol=500)
2

3| f <- function(x) t(x) %*% x

4|g <- function(x) crossprod(x)

5

6| library (rbenchmark)

7| benchmark (£f(x), g(x), columns=c("test", "replications", "elapsed", "relative"))
8

9| # test replications elapsed relative

10# 1 f£(x) 100 13.679 3.588

1n(# 2 g(x) 100 3.812 1.000
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Benchmarking

Benchmarking tools: microbenchmark

microbenchmark is a separate package with a slightly different philosophy:

x <- matrix(rnorm (10000%500), nrow=10000, ncol=500)

f <- function(x) t(x) %*% x
g <- function(x) crossprod(x)

library(microbenchmark)
microbenchmark (f(x), g(x), unit="s")

© 0 N O O AE W N

Unit: seconds

expr min 1q mean median uq max neval
f(x) 0.11418617 0.11647517 0.12258556 0.11754302 0.12058145 0.17292507 100
g(x) 0.03542552 0.03613772 0.03884497 0.03668231 0.03740173 0.07478309 100

H oH H H

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Benchmarking

Benchmarking tools: microbenchmark

bench <- microbenchmark (f(x), g(x), unit="s")
boxplot (bench)
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©
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Improving R Performance
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Free Improvements

e Free Improvements
o Packages
o The Bytecode Compiler
@ Choice of BLAS Library

@ Writing Better R Code
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Free Improvements Packages

© Free Improvements
o Packages
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Free Improvements Packages

o Many high-quality “application” packages exist.
Data manipulation: dplyr, data.table
Modeling/math: Many! Try the CRAN taskviews.

Parallelism: Discussed separately.
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Free Improvements The Bytecode Compiler

© Free Improvements

o The Bytecode Compiler
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Free Improvements The Bytecode Compiler

The Compiler Package

Released in 2011 (Tierney)

o Bytecode: sort of like machine code for interpreters. ..
@ Improves R code speed by 2-5% generally.
°

Does best on loops.
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Free Improvements | The Bytecode Compiler

Bytecode Compilation

o Non-core packages not (bytecode) compiled by default.

o "“Base” and “recommended” (core) packages are.
o Downsides:

o (slightly) larger install size
o (much!) longer install process
o doesn’t fix bad code

Upsides: slightly faster.
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Free Improvements | The Bytecode Compiler

Compiling a Function

test <- function(x) x+1
test
# function(x) x+1

library (compiler)

test <- cmpfun(test)
test

# function(x) x+1

10| # <bytecode: 0x38c86c8>

© 0 N O A W N

12| disassemble (test)

13| # list(.Code, 1list (7L, GETFUN.OP, 1L, MAKEPROM.OP, 2L, PUSHCONSTARG.OP,
14| # 3L, CALL.OP, OL, RETURN.OP), list(x + 1, ‘+¢, 1list(.Code,

15 | # list (7L, GETVAR.OP, OL, RETURN.OP), list(x)), 1))
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Free Improvements | The Bytecode Compiler

Compiling Packages
From R
1|install.packages("my_package", type="source", INSTALL_ opts="--byte-compile") |

From The Shell

-

export R_COMPILE_PKGS=1
R CMD INSTALL my_package.tar.gz

N

Or add the line: ByteCompile: yes to the package's DESCRIPTION file.
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The Compiler: How much does it help really?

f <- function(n) for (i in 1:n) 2*(3+4)

library (compiler)
f_comp <- cmpfun(f)

library (rbenchmark)

© 00 N O O AW N

10(n <- 100000

11 | benchmark (£ (n), f_comp(n), columns=c("test", "replications", "elapsed",
"relative"),

12| order="relative")

13| # test replications elapsed relative
14|(# 2 f_comp(n) 100 2.604 1.000
15| # 1 f(n) 100 2.845 1.093
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The Compiler: How much does it help really?

g <- function(n){
x <- matrix(runif(n*n), nrow=n, ncol=n)
min(colSums (x))

3

library (compiler)
g_comp <- cmpfun(g)

© 0 N O O W N

10| library (rbenchmark)

12|n <- 1000

13| benchmark (g(n), g_comp(n), columns=c("test", "replications", "elapsed",
"relative"),

14| order="relative")

15 | # test replications elapsed relative
16|# 2 g_comp(n) 100 6.854 1.000
17| # 1 g(n) 100 6.860 1.001
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Free Improvements Choice of BLAS Library

© Free Improvements

@ Choice of BLAS Library
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Free Improvements Choice of BLAS Library

The BLAS

Basic Linear Algebra Subprograms.

o Basic numeric matrix operations.

@ Used in linear algebra and many statistical operations.
o Different implementations available.

o Several multithreaded BLAS libraries exist.
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Free Improvements Choice of BLAS Library

Reference Atlas OpenBLAS MKL

v v v v
RFI{R DéC RRR D&cC RRR D&C

Comparing Symmetric Eigenvalue Performance http://bit.1ly/2£49Sop
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Writing Better R Code

e Free Improvements

@ Writing Better R Code
@ Loops
o Ply Functions
@ Vectorization
o Loops, Plys, and Vectorization
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Writing Better R Code Loops

@ Writing Better R Code
o Loops
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Writing Better R Code Loops

o for

@ while
o No goto's or do while's.

o They're really slow.
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Writing Better R Code Loops

Loops: Best Practices

Profile, profile, profile.

Mostly try to avoid.
Evaluate practicality of rewrite (plys, vectorization, compiled code)

Always preallocate storage; don't grow it dynamically.
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Writing Better R Code Ply Functions

@ Writing Better R Code

o Ply Functions
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Writing Better R Code Ply Functions

“Ply” Functions

@ R has functions that apply other functions to data.

@ In a nutshell: loop sugar.
o Typical *ply’s:

apply (): apply function over matrix “margin(s)”.
lapply O): apply function over list/vector.

mapply (): apply function over multiple lists/vectors.
sapply (): same as lapply (), but (possibly) nicer output.
Plus some other mostly irrelevant ones.

@ Also Map() and Reduce().
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Ply Examples: apply ()

1|x <- matrix(1:10, 2)
2
3| x
4| # [,11 [,21 [,3]1 [,4]1 [,s5]
s|# [1, 1 3 5 7 9
6|# [2,] 2 4 6 8 10
7
8| apply (X=x, MARGIN=1, FUN=sum)
ol# [1]1 25 30
10
11| apply (X=x, MARGIN=2, FUN=sum)
12 # [1] 3 7 11 15 19
13
14 | apply (X=x, MARGIN=1:2, FUN=sum)
15| # [,11 [,2] [,3] [,4] [,s]
16|# [1,] 1 3 5 7 9
7| # [2,] 2 4 6 8 10
| 4
-
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Ply Examples: lapply() and sapply()

1|lapply(1:4, sqrt)
2(# [[1]]

3(# [1]1 1

4| #

s(# [[2]]

6|# [1] 1.414214

7| #

s|# [[3]]

o|# [1] 1.732051

10| #

u|# [[4]]

12# [1] 2

13

14 | sapply (1:4, sqrt)
15(# [1] 1.000000 1.414214 1.732051 2.000000
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Writing Better R Code Ply Functions

Transforming Loops Into Ply's

vec <- numeric(n)
for (i in 1:mn){
vec[i]l <- my_function (i)

AW N =

3

Becomes:

1| sapply(1:n, my_function)
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Writing Better R Code Ply Functions

Ply's: Best Practices

@ Most ply's are just shorthand/higher expressions of loops.

o Generally not much faster (if at all), especially with the compiler.

o Thinking in terms of lapply () can be useful however. ..
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Writing Better R Code Ply Functions

Ply's: Best Practices

o With ply’s and lambdas, can do some fiendishly crafty things.

o But don't go crazy. ..

fun

cat (sapply(letters, function(a) sapply(letters, function(b) sapply(letters,
function(c) sapply(letters, function(d) paste(a, b, c, d, letters, "\n",
sep=""))))))
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Writing Better R Code Vectorization

@ Writing Better R Code

@ Vectorization
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Writing Better R Code Vectorization

0 x+y
o x[, 1] <- 0
@ rnorm(1000)
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Writing Better R Code Vectorization

@ Same in R as in other high-level languages (Matlab, Python, ...).

o ldea: use pre-existing compiled kernels to avoid interpreter overhead.
@ Much faster than loops and plys.

1| ply <- function(x) lapply(rep(1, 1000), rnorm)
2| vec <- function(x) rnorm(1000)

3

4| library (rbenchmark)

5| benchmark (ply (x), vec(x))

6| # test replications elapsed relative

7[# 1 ply(x) 100  0.348  38.667

8|# 2 vec(x) 100 0.009 1.000
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Writing Better R Code Loops, Plys, and Vectorization

@ Writing Better R Code

o Loops, Plys, and Vectorization
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Writing Better R Code Loops, Plys, and Vectorization

Putting It All Together

o Loops are slow.

o apply (), Reduce() are just for loops.

@ Map(), lapply (), sapply (), mapply () (and most other core ones) are not for loops.
o Ply functions are not vectorized.

°

Vectorization is fastest, but often needs lots of memory.
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Writing Better R Code Loops, Plys, and Vectorization

Squares
Let's compute the square of the numbers 1-100000, using
@ for loop without preallocation
@ for loop with preallocation
@ sapply(O)
@ vectorization
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Writing Better R Code Loops, Plys, and Vectorization

Squares

square_sapply <- function(n) sapply(l:n, function(i) i~2)

3| square_vec <- function(n) (1:n)*(1:n)

library (rbenchmark)
n <- 100000

B W N =

benchmark (square_loop_noinit(n), square_loop_withinit(n), square_sapply(n),
square_vec(n))

5| # test replications elapsed relative
6|# 1 square_loop_noinit (n) 100 17.296 2470.857
7|# 2 square_loop_withinit (n) 100 0.933 133.286
8|# 3 square_sapply (n) 100 1.218 174.000
9| # 4 square_vec (n) 100 0.007 1.000
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Part IlI

Parallelism
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An Overview of Parallelism

@ An Overview of Parallelism
© Shared Memory Parallelism in R
© Distributed Memory Parallelism with R

@ Distributed Matrices
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An Overview of Parallelism

Parallel Programming Packages for R

Shared Memory

Examples: parallel, snow, foreach, Examples: pbdR, Rmpi, RHadoop, RHIPE
gputools, HIPLARM

CRAN HPC Task View

For more examples, see:
http://cran.r-project.org/web/views/HighPerformanceComputing.html
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An Overview of Parallelism

LAPACK
Focus on who owns V d BLAS

what communication is need e

Distributed Memory

Interconnection Network
ScaLAPACK

PBLAS
BLACS

Same Task on -
Blocks of data T""" .uomw

Co-Processor

TITT
innn> gy

CUBLAS

Shared Memory

.c
.Call
| X GPU: Graphical Proceséin{  REPP. MAGMA
MIG*Many Integratéd cord OpenCL RIiSiilg
inline [EELLUE MKL

Network @ ACML
MP LibSci
Memory ‘_';_f‘e" 5
o] DPLASMA
‘ @ snow + multicore = parallel ] PLASMA
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An Overview of Parallelism

Many parallel R packages break on Windows

A fatal exception BE has o irred at BB K n UXD UMHIB1) +
B current app ation will

: any key to t e nt application.
CTRL+ALT+DEL aga t B You will

lose any unsaved informa
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An Overview of Parallelism

RNG's in Parallel

o Be careful!

o Aided by rlecuyer, rsprng, and doRNG packages.
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An Overview of Parallelism

Parallel Programming: In Theory
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An Overview of Parallelism

Parallel Programming: In Practice
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Shared Memory Parallelism in R

@ An Overview of Parallelism

© Shared Memory Parallelism in R
@ The parallel Package
o The foreach Package
© Distributed Memory Parallelism with R

@ Distributed Matrices
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Shared Memory Parallelism in R The parallel Package

© Shared Memory Parallelism in R
o The parallel Package
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Shared Memory Parallelism in R The parallel Package

The parallel Package

o Comes with R > 2.14.0

o Has 2 disjoint interfaces.

parallel =snow + multicore
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

Operates on fork/join paradigm.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

+ Data copied to child on write (handled by OS)
+ Very efficient.
- No Windows support.

- Not as efficient as threads.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

mclapply (X, FUN,
mc.preschedule= TRUE mc.set.seed=TRUE,
mc.silent=FALSE, mc.cores=getOption("mc.cores", 2L),
mc.cleanup=TRUE, mc.allow.recursive=TRUE)

A w N R

x <- lapply(1:10, sqrt)

library(parallel)
x.mc <- mclapply(1:10, sqrt)

all.equal(x.mc, x)
# [1] TRUE

N o R W N =
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Shared Memory Parallelism in R The parallel Package

The parallel Package: multicore

simplify2array(mclapply(1:10, function(i) Sys.getpid(), mc.cores=4))
# [1] 27452 27453 27454 27455 27452 27453 27454 27455 27452 27453

simplify2array(mclapply(1:2, function(i) Sys.getpid(), mc.cores=4))
# [1] 27457 2745

g R W N R
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Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

? Uses sockets.

+ Works on all platforms.
- More fiddley than mclapply ().

- Not as efficient as forks.
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Shared Memory Parallelism in R The parallel Package

The parallel Package: snow

### Set up the worker processes

cl <- makeCluster (detectCores ())

cl

# socket cluster with 4 nodes on host localhost

parSapply(cl, 1:5, sqrt)

0 N OO W N

stopCluster (cl)
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Shared Memory Parallelism in R The parallel Package

The parallel Package: Summary

All
o detectCores()

o splitIndices()

multicore

@ mclapply() o makeCluster()
o mcmapply () o stopCluster()
o mcparallel() o parLapply()

@ mccollect() o parSapply()

@ and others. .. @ and others. .
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Shared Memory Parallelism in R The foreach Package

© Shared Memory Parallelism in R

o The foreach Package
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Shared Memory Parallelism in R The foreach Package

The foreach Package

@ On Cran (Revolution Analytics).

o Main package is foreach, which is a single interface for a number of “backend” packages.
o Backends: doMC, doMPI, doParallel, doRedis, doRNG, doSNOW.
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Shared Memory Parallelism in R | The foreach Package

The foreach Package: The Idea

Unify the disparate interfaces.
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Shared Memory Parallelism in R The foreach Package

The foreach Package
+ Works on all platforms (if backend does).

-+ Can even work serial with minor notational change.

+ Write the code once, use whichever backend you prefer.
- Really bizarre, non-R-ish synatx.

- Efficiency issues if you aren't careful!
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Shared Memory Parallelism in R The foreach Package

Coin Flipping with 24 Cores

2- 1| ### Bad performance
foreach(i=1:1en) %dopar%
tinyfun (i)

N

Function
- lapply
= mclapply
- foreach

### Expected performance
foreach(i=1:ncores) Y%dopar¥ {
out <- numeric(len/ncores)
for (j in 1:(len/ncores))
out[i] <- tinyfun(j)

out

Log Run Time in Seconds

© o N o bW

! | i i
10000 1e+05 1e+06

100 10
Length of Iterating Set

.
1S
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Shared Memory Parallelism in R The foreach Package

The foreach Package: General Procedure

o Load foreach and your backend package.

o Register your backend.

o Call foreach
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Shared Memory Parallelism in R The foreach Package

Using foreach: serial

1| library (foreach)

2

3| ### Example 1

4| foreach(i=1:3) %do) sqrt (i)

5

6| ### Example 2

7|n <- 50

8| reps <- 100

9

10|x <- foreach(i=1:reps) %do% {
11 sum(rnorm(n, mean=i)) / (n*reps)
12|
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Using foreach: Parallel

library (foreach)
library (<mybackend>)

register <MyBackend > ()

### Example 1
foreach(i=1:3) Jdopar) sqrt (i)

© 00 N OO E W N

### Example 2
10/n <- 50
11| reps <- 100

12

13| x <- foreach(i=1:reps) Ydopar/ {

14 sum(rnorm(n, mean=i)) / (n*xreps)
15X
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Shared Memory Parallelism in R The foreach Package

foreach backends

multicore
library (doParallel)
2| registerDoParallel (cores=ncores)
3| foreach(i=1:2) Y%dopar’ Sys.getpid()
snow

library (doParallel)
cl <- makeCluster (ncores)
registerDoParallel (cl=cl)

foreach(i=1:2) Ydopary Sys.getpid()
stopCluster (cl)

S O A W N =
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Distributed Memory Parallelism with R

@ An Overview of Parallelism
© Shared Memory Parallelism in R

© Distributed Memory Parallelism with R
o Distributed Memory Parallelism
o Rmpi
o pbdMPI vs Rmpi

@ Distributed Matrices
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Distributed Memory Parallelism with R Distributed Memory Parallelism

© Distributed Memory Parallelism with R
@ Distributed Memory Parallelism
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Distributed Memory Parallelism with R Distributed Memory Parallelism

Why Distribute?

@ Nodes only hold so much ram.

o Commodity hardware: = 32 — 64 gib.
o With a few exceptions (ff, bigmemory), R does computations in memory.

o If your problem doesn't fit in the memory of one node. ..
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Distributed Memory Parallelism with R Distributed Memory Parallelism

Packages for Distributed Memory Parallelism in R

o Rmpi, and snow via Rmpi.
o RHIPE and RHadoop ecosystem.

o pbdR ecosystem.
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Distributed Memory Parallelism with R Rmpi

© Distributed Memory Parallelism with R

o Rmpi
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Distributed Memory Parallelism with R Rmpi

Rmpi Hello World

1| mpi.spawn.Rslaves (nslaves=2)

2| # 2 slaves are spawned successfully. 0 failed.

3| # master (rank O, comm 1) of size 3 is running on: wootabega
4|# slavel (rank 1, comm 1) of size 3 is running on: wootabega
5|# slave2 (rank 2, comm 1) of size 3 is running on: wootabega
6

7| mpi.remote.exec(paste("I am",mpi.comm.rank(),"of",mpi.comm.size()))
8| # $slavel

o|# [1] "I am 1 of 3"

10 | #

11| # $slave2

12(# [1] "I am 2 of 3"

13

14 | mpi.exit ()
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Using Rmpi from snow

Distributed Memory Parallelism with R

Rmpi

library (snow)
library (Rmpi)

clusterCall (cl,
clusterCall (cl,
stopCluster (cl)
mpi.quit ()

0 N OO W N

cl <- makeCluster (2,

type = "MPI")
function() Sys.getpid())
runif, 2)
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Distributed Memory Parallelism with R Rmpi

Rmpi Resources

o Rmpi tutorial: http://math.acadiau.ca/ACMMaC/Rmpi/

© Rmpi manual: http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf
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Distributed Memory Parallelism with R pbdMPI vs Rmpi

© Distributed Memory Parallelism with R

o pbdMPI vs Rmpi
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Distributed Memory Parallelism with R pbdMPI vs Rmpi

pbdMPI vs Rmpi

o Rmpi is interactive; ppbdMPI is exclusively batch.
pbdMPI is easier to install.
pbdMPI has a simpler interface.

pbdMPI integrates with other pbdR packages.
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Distributed Memory Parallelism with R pbdMPI vs Rmpi

Example Syntax

Rmpi pbdMPI

# int 1|a11reduce(x)
mpi.allreduce(x, type=1)
# double

mpi.allreduce(x, type=2)

A wN e

Types in R

> typeof (1)
[1] "double"
> typeof (2)
[1] "double"
> typeof (1:2)
[1] "integer"

S O A W N
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Distributed Matrices

@ An Overview of Parallelism
© Shared Memory Parallelism in R
© Distributed Memory Parallelism with R

@ Distributed Matrices
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Distributed Matrices and Statistics with ppdDMAT

Least Squares Benchmark

Fitting y~x With Fixed Local Size of ~43.4 MiB

e o
125 3

Predictors === 500 == 1000 == 2000

z
g
Y
g
E
o »
50 - o 5 =
DRL
Q\(’@
A »
7_,93&9?(’ 5 z
F® & K =
Cores
x <— ddmatrix(”rnorm” , nrow=m, ncol=n)
<— ddmatrix(”"rnorm” , nrow=m, ncol=1
| 4
mdl <— Im. fit (x=x, y=y)
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Distributed Matrices

pbdR Scripts

@ They're just R scripts.

o Can't run interactively (with more than 1 rank).

o We can use pbdinline to get “pretend interactivity"” .
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Distributed Matrices

ddmatrix: 2-dimensional Block-Cyclic with 6 Processors

X11 X12 | X13  X14 | X15  Xi6 | X17 X18 | X19
X21 X2 | X203 X4 | Xo5  Xop | X207  X28 | X29
X31 X32 | X33 X34 | X35 X36 | X37 X338 | X39
X41  Xa2 | Xa3  Xa4 | X45 X46 | X47 X48 | X49
X = X51 Xs52 | X53 X54 | X55 X56 | X57 X5g | X59
X6l X2 | X63 Xp4 | X65 X66 | X67 X68 | X69
X71 X72 | X73  X74 | X75  X76 | X77  X78 | X79
Xg1 Xg2 | X83 X84 | X85 X386 | X87 X88 | X89
| Xo1  X92 | X93 X94 | Xo5 Xo6 | Xg7 X98 | X99 | g ¢

O

Processor grid = ‘ g

Slides: wrathematics.github.io/hpcdevcon2016/ Drew Schmidt | HPC With R: The Basics



Distributed Matrices

Understanding ddmatrix: Local View

X11 X12 | X17  X18 X13  X14 | X19 X15  X16
X21  X22 | X271  X28 X23  X24 | X29 X25  X26
X51  X52 | X57 X58 X53  X54 | X59 X565  X56
X61  X62 | X67 X68 X63  X64 | X69 X65  X66

X91 X92 | Xg7 X98 |g. ., L X093 Xo4 | X990 | o L X05 X096 g,

X31 X32 | X37 X38 X33 X34 | X39 X35  X36
Xa1 X42 | X47 Xag X43  Xa4 | X49 X45  Xa6
X71 X72 | X77 X8 X73  X74 | X79 X75  X76

| X1 Xg2 | X7 X88 |44 L X683 Xsa | X80 [, 3 L X85 X86 1,0

Processor grid = ‘ g
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Distributed Matrices

Methods for class ddmatrix
pbdDMAT has over 100 methods with identical syntax to R:
o [, rbind(), cbind(), ...
Im.fit (), prcomp(), cov(), ...

°
o “%x%>, solve(), svd(), norm(), ...
°

median(), mean(), rowSums(), ...

Serial Code

1|cov(x) |

Parallel Code

1|cov(x) |

HPC With R: The Basics
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Part IV
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~Thanks!~

Questions?

NV
) wrathematics@gmail.com
OGitHub: https://github.com/wrathematics
A -

Web: http://wrathematics.info
’Twitter: O@wrathematics
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